Science

Geek Out: A Rocket Launch on Mars

A rocket will launch from another planet, potentially within a decade. If that’s not enough to get your head spinning, we’ve done a little more reading up on the lengthy checklist for the Mars Ascent Vehicle, or MAV for short.

The Perseverance rover has been milling about on Mars for a while now, collecting samples of dirt from the planet’s Jezero Crater and sealing them inside a series of tubes. One problem: right now, there’s no Earth return ticket for those samples. NASA and ESA are working out the complex details of how to get those tubes across the wide expanse of space separating our planets.

This week, NASA announced that it had awarded Lockheed Martin a $194M cost-plus contract to build MAV and the ground infrastructure needed to set up and launch it from the surface of Mars. As part of the contract, Lockheed will construct several test units and a flight unit, the latter of which will fly aboard NASA’s Sample Retrieval Lander mission, slated for no earlier than 2026.

The task at hand: MAV will need to get to Mars nestled inside the Sample Retrieval Lander, which will land as close to Perseverance as possible, in or near the Jezero Crater. The system will use a rover to collect the dirt samples from Perseverance and load them into the ship. The double-duty lander will then serve as the launch platform for MAV, which will launch remotely and get to Mars orbit. There, an ESA Earth Return Orbiter will be patiently waiting to grab the samples and ferry them home. 

The constraints: Building this little rocket will be no small task. Designing a rocket to launch remotely from an environment completely different from our own is uncharted territory. The rocket needs to be small enough to fit in the lander, and tough enough to withstand the dusty, harsh environment on Mars (which seems determined to destroy any instrument that dares land there). It also must launch without the luxury of human direction and support that rockets have at home.

And that’s not even the full story—once the samples are delivered to the ESA orbiter, the craft needs to keep them safe and uncontaminated for the whole journey home. 

+ Still want more? Last month, we dug into what it will take to preserve and sterilize Mars samples to keep them—and, potentially, us—safe on their trip back to Earth. Read the story here.

Related Stories
BusinessDeep SpaceScience

Rocket Lab Takes On Venus

Deep space exploration isn’t just for governments anymore.

Science

NASA Reveals Bennu Asteroid Samples, Finds Water and Carbon

Small rocks, big rocks, carbon rocks, water rocks—everyone gets a space rock.

ParallaxScience

Vector Atomic Delivers Atomic Gyroscope to DIU

The most accurate clock in the world will pass 50B years before it falls a single second behind. A clock like that could change everything we know about timekeeping and tracking our position in the world, dramatically transforming the precision of our measurements across the globe in a moment. This type of clock is a […]

Science

NASA’s OSIRIS-REx Delivers Asteroid Samples to Earth

Asteroid bits from millions of miles away have been safely delivered to Earth’s doorstep.  After its seven-year journey, the OSIRIS-REx spacecraft flew by Earth yesterday, tossing down a capsule carrying an estimated 250 grams of extraterrestrial regolith.  The capsule parachuted down to the DoD’s Utah Test and Training Range and safely landed right-side up. The […]