Technology

NASA Nixes Solar Power From Space (At Least For Now)

A solar flare erupts on Jan. 30, 2014, as seen by the bright flash on the left side of the sun, captured here by NASA's Solar Dynamics Observatory. In the lower right corner the moon can be seen, having just passed between the observatory and the sun.
Power to spare…if we can capture it. (NASA Goddard SDO)

The dream of using solar panels in space to deliver electricity to the Earth below has animated engineers for 80+ years, but even with the falling cost of space access, we’re still far from solving the climate change problem with orbital power plants.

A new study from NASA evaluated whether Space Based Solar Power (SBSP) could compete with terrestrial electricity and reduce emissions. The authors considered two model designs that would both require putting massive arrays of solar panels in orbit to collect solar power and beam it to Earth. 

First, the bad news: The technology won’t be ready for prime time by 2050, according to the study. And the SBSP that is available comes with a hefty pricetag—the cheapest electricity from space in their analysis is $0.61 per kilowatt-hour, while the average American pays $0.167 per kilowatt-hour today.

For those more worried about climate impact than dollar signs, the tech may not be as clean as it seems. While the solar power itself is green, the emissions from launching these enormous space-based power plants make it tricky to assess if it is actually better than ground-based alternatives—particularly because we don’t have a clear understanding of how emissions from rockets in the upper atmosphere affect climate change.

Here’s the roadmap: According to the authors, to make the case for SBSP close, we’ll need:

  • Launch costs dropping to $500/kg (A Falcon 9 today costs about $3,000/kg)
  • Infrastructure for frequent electric propulsion orbital transfer from LEO to GEO
  • Hardware that lasts 15+ years
  • Cheaper vehicles to service spacecraft and remove debris, on the order of $50-$100M
  • The ability to drive down the cost of spacecraft through efficient manufacturing

And nothing happens in a vacuum (except in space, of course.) The study concludes that advancements in other areas of focus for NASA could be applied to SBSP, helping the tech get off the ground faster. Perhaps by the time the CalTech researchers working on novel phased-array solar panels have the kinks worked out, we’ll have the space infrastructure to build it on the cheap. 

Related Stories
MilitaryTechnology

X-37B Gearing Up for Eighth Mission to Orbit

The Boeing-developed X-37B will carry several experiments designed to advance the DoD’s in-space capabilities and resilience.

ScienceTechnology

Will NASA’s Next Mars Mission Be A Fleet of Helicopters?

The success of the Ingenuity helicopter has teed up a more ambitious vision of aerial exploration on the Red Planet.

CivilResearchTechnology

NASA Releases Updated Software Catalog

NASA is continuing its tradition of not gatekeeping success by unveiling a major update to its public software catalog.

StartupsTechnology

Rotating Detonation Engine Startup Wins NASA TechLeap Prize

Juno is seeking to build a commercially viable RDE to lower propulsion costs for launch companies and sat operators without sacrificing thrust.